Reading: the internet
Efficient algorithms for matrix algebra
import scipy.linalg.blas as blas
dir(blas)
['__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', '_blas_alias', '_cblas', '_fblas', '_get_funcs', '_np', '_type_conv', '_type_score', 'absolute_import', 'caxpy', 'ccopy', 'cdotc', 'cdotu', 'cgbmv', 'cgemm', 'cgemv', 'cgerc', 'cgeru', 'chbmv', 'chemm', 'chemv', 'cher', 'cher2', 'cher2k', 'cherk', 'chpmv', 'chpr', 'chpr2', 'crotg', 'cscal', 'cspmv', 'cspr', 'csrot', 'csscal', 'cswap', 'csymm', 'csyr', 'csyr2k', 'csyrk', 'ctbmv', 'ctbsv', 'ctpmv', 'ctpsv', 'ctrmm', 'ctrmv', 'ctrsm', 'ctrsv', 'dasum', 'daxpy', 'dcopy', 'ddot', 'dgbmv', 'dgemm', 'dgemv', 'dger', 'division', 'dnrm2', 'drot', 'drotg', 'drotm', 'drotmg', 'dsbmv', 'dscal', 'dspmv', 'dspr', 'dspr2', 'dswap', 'dsymm', 'dsymv', 'dsyr', 'dsyr2', 'dsyr2k', 'dsyrk', 'dtbmv', 'dtbsv', 'dtpmv', 'dtpsv', 'dtrmm', 'dtrmv', 'dtrsm', 'dtrsv', 'dzasum', 'dznrm2', 'find_best_blas_type', 'get_blas_funcs', 'icamax', 'idamax', 'isamax', 'izamax', 'print_function', 'sasum', 'saxpy', 'scasum', 'scnrm2', 'scopy', 'sdot', 'sgbmv', 'sgemm', 'sgemv', 'sger', 'snrm2', 'srot', 'srotg', 'srotm', 'srotmg', 'ssbmv', 'sscal', 'sspmv', 'sspr', 'sspr2', 'sswap', 'ssymm', 'ssymv', 'ssyr', 'ssyr2', 'ssyr2k', 'ssyrk', 'stbmv', 'stbsv', 'stpmv', 'stpsv', 'strmm', 'strmv', 'strsm', 'strsv', 'zaxpy', 'zcopy', 'zdotc', 'zdotu', 'zdrot', 'zdscal', 'zgbmv', 'zgemm', 'zgemv', 'zgerc', 'zgeru', 'zhbmv', 'zhemm', 'zhemv', 'zher', 'zher2', 'zher2k', 'zherk', 'zhpmv', 'zhpr', 'zhpr2', 'zrotg', 'zscal', 'zspmv', 'zspr', 'zswap', 'zsymm', 'zsyr', 'zsyr2k', 'zsyrk', 'ztbmv', 'ztbsv', 'ztpmv', 'ztpsv', 'ztrmm', 'ztrmv', 'ztrsm', 'ztrsv']
import scipy.linalg.lapack as lapack
dir(lapack)
['_DeprecatedImport', '__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', '_clapack', '_compute_lwork', '_dep_message', '_flapack', '_get_funcs', '_lapack_alias', '_np', 'absolute_import', 'cgbsv', 'cgbtrf', 'cgbtrs', 'cgebal', 'cgecon', 'cgees', 'cgeev', 'cgeev_lwork', 'cgegv', 'cgehrd', 'cgehrd_lwork', 'cgels', 'cgels_lwork', 'cgelsd', 'cgelsd_lwork', 'cgelss', 'cgelss_lwork', 'cgelsy', 'cgelsy_lwork', 'cgeqp3', 'cgeqrf', 'cgerqf', 'cgesdd', 'cgesdd_lwork', 'cgesv', 'cgesvd', 'cgesvd_lwork', 'cgesvx', 'cgetrf', 'cgetri', 'cgetri_lwork', 'cgetrs', 'cgges', 'cggev', 'cgglse', 'cgglse_lwork', 'cgtsv', 'chbevd', 'chbevx', 'checon', 'cheev', 'cheevd', 'cheevr', 'chegst', 'chegv', 'chegvd', 'chegvx', 'chesv', 'chesv_lwork', 'chesvx', 'chesvx_lwork', 'chetrd', 'chetrd_lwork', 'chetrf', 'chetrf_lwork', 'chfrk', 'clange', 'clapack', 'clarf', 'clarfg', 'clartg', 'claswp', 'clauum', 'cpbsv', 'cpbtrf', 'cpbtrs', 'cpftrf', 'cpftri', 'cpftrs', 'cpocon', 'cposv', 'cposvx', 'cpotrf', 'cpotri', 'cpotrs', 'cptsv', 'crot', 'csycon', 'csyconv', 'csysv', 'csysv_lwork', 'csysvx', 'csysvx_lwork', 'csytf2', 'csytrf', 'csytrf_lwork', 'ctfsm', 'ctfttp', 'ctfttr', 'ctgsen', 'ctpttf', 'ctpttr', 'ctrsyl', 'ctrtri', 'ctrtrs', 'ctrttf', 'ctrttp', 'ctzrzf', 'ctzrzf_lwork', 'cunghr', 'cunghr_lwork', 'cungqr', 'cungrq', 'cunmqr', 'cunmrz', 'cunmrz_lwork', 'dgbsv', 'dgbtrf', 'dgbtrs', 'dgebal', 'dgecon', 'dgees', 'dgeev', 'dgeev_lwork', 'dgegv', 'dgehrd', 'dgehrd_lwork', 'dgels', 'dgels_lwork', 'dgelsd', 'dgelsd_lwork', 'dgelss', 'dgelss_lwork', 'dgelsy', 'dgelsy_lwork', 'dgeqp3', 'dgeqrf', 'dgerqf', 'dgesdd', 'dgesdd_lwork', 'dgesv', 'dgesvd', 'dgesvd_lwork', 'dgesvx', 'dgetrf', 'dgetri', 'dgetri_lwork', 'dgetrs', 'dgges', 'dggev', 'dgglse', 'dgglse_lwork', 'dgtsv', 'division', 'dlamch', 'dlange', 'dlarf', 'dlarfg', 'dlartg', 'dlasd4', 'dlaswp', 'dlauum', 'dorghr', 'dorghr_lwork', 'dorgqr', 'dorgrq', 'dormqr', 'dormrz', 'dormrz_lwork', 'dpbsv', 'dpbtrf', 'dpbtrs', 'dpftrf', 'dpftri', 'dpftrs', 'dpocon', 'dposv', 'dposvx', 'dpotrf', 'dpotri', 'dpotrs', 'dptsv', 'dsbev', 'dsbevd', 'dsbevx', 'dsfrk', 'dstebz', 'dstein', 'dstemr', 'dstemr_lwork', 'dsterf', 'dstev', 'dsycon', 'dsyconv', 'dsyev', 'dsyevd', 'dsyevr', 'dsygst', 'dsygv', 'dsygvd', 'dsygvx', 'dsysv', 'dsysv_lwork', 'dsysvx', 'dsysvx_lwork', 'dsytf2', 'dsytrd', 'dsytrd_lwork', 'dsytrf', 'dsytrf_lwork', 'dtfsm', 'dtfttp', 'dtfttr', 'dtgsen', 'dtpttf', 'dtpttr', 'dtrsyl', 'dtrtri', 'dtrtrs', 'dtrttf', 'dtrttp', 'dtzrzf', 'dtzrzf_lwork', 'find_best_lapack_type', 'flapack', 'get_lapack_funcs', 'ilaver', 'print_function', 'sgbsv', 'sgbtrf', 'sgbtrs', 'sgebal', 'sgecon', 'sgees', 'sgeev', 'sgeev_lwork', 'sgegv', 'sgehrd', 'sgehrd_lwork', 'sgels', 'sgels_lwork', 'sgelsd', 'sgelsd_lwork', 'sgelss', 'sgelss_lwork', 'sgelsy', 'sgelsy_lwork', 'sgeqp3', 'sgeqrf', 'sgerqf', 'sgesdd', 'sgesdd_lwork', 'sgesv', 'sgesvd', 'sgesvd_lwork', 'sgesvx', 'sgetrf', 'sgetri', 'sgetri_lwork', 'sgetrs', 'sgges', 'sggev', 'sgglse', 'sgglse_lwork', 'sgtsv', 'slamch', 'slange', 'slarf', 'slarfg', 'slartg', 'slasd4', 'slaswp', 'slauum', 'sorghr', 'sorghr_lwork', 'sorgqr', 'sorgrq', 'sormqr', 'sormrz', 'sormrz_lwork', 'spbsv', 'spbtrf', 'spbtrs', 'spftrf', 'spftri', 'spftrs', 'spocon', 'sposv', 'sposvx', 'spotrf', 'spotri', 'spotrs', 'sptsv', 'ssbev', 'ssbevd', 'ssbevx', 'ssfrk', 'sstebz', 'sstein', 'sstemr', 'sstemr_lwork', 'ssterf', 'sstev', 'ssycon', 'ssyconv', 'ssyev', 'ssyevd', 'ssyevr', 'ssygst', 'ssygv', 'ssygvd', 'ssygvx', 'ssysv', 'ssysv_lwork', 'ssysvx', 'ssysvx_lwork', 'ssytf2', 'ssytrd', 'ssytrd_lwork', 'ssytrf', 'ssytrf_lwork', 'stfsm', 'stfttp', 'stfttr', 'stgsen', 'stpttf', 'stpttr', 'strsyl', 'strtri', 'strtrs', 'strttf', 'strttp', 'stzrzf', 'stzrzf_lwork', 'zgbsv', 'zgbtrf', 'zgbtrs', 'zgebal', 'zgecon', 'zgees', 'zgeev', 'zgeev_lwork', 'zgegv', 'zgehrd', 'zgehrd_lwork', 'zgels', 'zgels_lwork', 'zgelsd', 'zgelsd_lwork', 'zgelss', 'zgelss_lwork', 'zgelsy', 'zgelsy_lwork', 'zgeqp3', 'zgeqrf', 'zgerqf', 'zgesdd', 'zgesdd_lwork', 'zgesv', 'zgesvd', 'zgesvd_lwork', 'zgesvx', 'zgetrf', 'zgetri', 'zgetri_lwork', 'zgetrs', 'zgges', 'zggev', 'zgglse', 'zgglse_lwork', 'zgtsv', 'zhbevd', 'zhbevx', 'zhecon', 'zheev', 'zheevd', 'zheevr', 'zhegst', 'zhegv', 'zhegvd', 'zhegvx', 'zhesv', 'zhesv_lwork', 'zhesvx', 'zhesvx_lwork', 'zhetrd', 'zhetrd_lwork', 'zhetrf', 'zhetrf_lwork', 'zhfrk', 'zlange', 'zlarf', 'zlarfg', 'zlartg', 'zlaswp', 'zlauum', 'zpbsv', 'zpbtrf', 'zpbtrs', 'zpftrf', 'zpftri', 'zpftrs', 'zpocon', 'zposv', 'zposvx', 'zpotrf', 'zpotri', 'zpotrs', 'zptsv', 'zrot', 'zsycon', 'zsyconv', 'zsysv', 'zsysv_lwork', 'zsysvx', 'zsysvx_lwork', 'zsytf2', 'zsytrf', 'zsytrf_lwork', 'ztfsm', 'ztfttp', 'ztfttr', 'ztgsen', 'ztpttf', 'ztpttr', 'ztrsyl', 'ztrtri', 'ztrtrs', 'ztrttf', 'ztrttp', 'ztzrzf', 'ztzrzf_lwork', 'zunghr', 'zunghr_lwork', 'zungqr', 'zungrq', 'zunmqr', 'zunmrz', 'zunmrz_lwork']
...name can be annoyingly google-proof however
Much (most) code you get for free, or even pay for, that implements mathematical algorithms may be of limited value.
Linear algebra, however, is "solved", in terms of numerical programming.
Your main concern is to find an implementation that fits for your application. E.g. parallel, or sparse, or optimized for a particular CPU.
Jupyter - "notebooks" for inline code + LaTex math + markup, etc.
NumPy - low-level array & matrix handling and algorithms
SciPy - higher level numerical algorithms (still fairly basic)
Matplotlib - matlab-style plotting & image display
SkLearn - (Scikit-learn) Machine Learning library
import numpy as np
x = np.array([2,0,1,8])
print(x)
[2 0 1 8]
l = range(1234)
%timeit [i ** 2 for i in l]
389 µs ± 8.15 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
import numpy as np
a = np.arange(1234)
%timeit a ** 2
1.41 µs ± 7.46 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
help(np.array)
Help on built-in function array in module numpy.core.multiarray: array(...) array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0) Create an array. Parameters ---------- object : array_like An array, any object exposing the array interface, an object whose __array__ method returns an array, or any (nested) sequence. dtype : data-type, optional The desired data-type for the array. If not given, then the type will be determined as the minimum type required to hold the objects in the sequence. This argument can only be used to 'upcast' the array. For downcasting, use the .astype(t) method. copy : bool, optional If true (default), then the object is copied. Otherwise, a copy will only be made if __array__ returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy any of the other requirements (`dtype`, `order`, etc.). order : {'K', 'A', 'C', 'F'}, optional Specify the memory layout of the array. If object is not an array, the newly created array will be in C order (row major) unless 'F' is specified, in which case it will be in Fortran order (column major). If object is an array the following holds. ===== ========= =================================================== order no copy copy=True ===== ========= =================================================== 'K' unchanged F & C order preserved, otherwise most similar order 'A' unchanged F order if input is F and not C, otherwise C order 'C' C order C order 'F' F order F order ===== ========= =================================================== When ``copy=False`` and a copy is made for other reasons, the result is the same as if ``copy=True``, with some exceptions for `A`, see the Notes section. The default order is 'K'. subok : bool, optional If True, then sub-classes will be passed-through, otherwise the returned array will be forced to be a base-class array (default). ndmin : int, optional Specifies the minimum number of dimensions that the resulting array should have. Ones will be pre-pended to the shape as needed to meet this requirement. Returns ------- out : ndarray An array object satisfying the specified requirements. See Also -------- empty, empty_like, zeros, zeros_like, ones, ones_like, full, full_like Notes ----- When order is 'A' and `object` is an array in neither 'C' nor 'F' order, and a copy is forced by a change in dtype, then the order of the result is not necessarily 'C' as expected. This is likely a bug. Examples -------- >>> np.array([1, 2, 3]) array([1, 2, 3]) Upcasting: >>> np.array([1, 2, 3.0]) array([ 1., 2., 3.]) More than one dimension: >>> np.array([[1, 2], [3, 4]]) array([[1, 2], [3, 4]]) Minimum dimensions 2: >>> np.array([1, 2, 3], ndmin=2) array([[1, 2, 3]]) Type provided: >>> np.array([1, 2, 3], dtype=complex) array([ 1.+0.j, 2.+0.j, 3.+0.j]) Data-type consisting of more than one element: >>> x = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')]) >>> x['a'] array([1, 3]) Creating an array from sub-classes: >>> np.array(np.mat('1 2; 3 4')) array([[1, 2], [3, 4]]) >>> np.array(np.mat('1 2; 3 4'), subok=True) matrix([[1, 2], [3, 4]])
Will cover more later, but first a quick intro to some other packages.
Implements higher-level scientific algorithms using NumPy. Examples:
Also uses BLAS/LAPACK
import scipy
dir(scipy)
['ALLOW_THREADS', 'AxisError', 'BUFSIZE', 'CLIP', 'ComplexWarning', 'DataSource', 'ERR_CALL', 'ERR_DEFAULT', 'ERR_IGNORE', 'ERR_LOG', 'ERR_PRINT', 'ERR_RAISE', 'ERR_WARN', 'FLOATING_POINT_SUPPORT', 'FPE_DIVIDEBYZERO', 'FPE_INVALID', 'FPE_OVERFLOW', 'FPE_UNDERFLOW', 'False_', 'Inf', 'Infinity', 'LowLevelCallable', 'MAXDIMS', 'MAY_SHARE_BOUNDS', 'MAY_SHARE_EXACT', 'MachAr', 'ModuleDeprecationWarning', 'NAN', 'NINF', 'NZERO', 'NaN', 'PINF', 'PZERO', 'PackageLoader', 'RAISE', 'RankWarning', 'SHIFT_DIVIDEBYZERO', 'SHIFT_INVALID', 'SHIFT_OVERFLOW', 'SHIFT_UNDERFLOW', 'ScalarType', 'TooHardError', 'True_', 'UFUNC_BUFSIZE_DEFAULT', 'UFUNC_PYVALS_NAME', 'VisibleDeprecationWarning', 'WRAP', '__SCIPY_SETUP__', '__all__', '__builtins__', '__cached__', '__config__', '__doc__', '__file__', '__loader__', '__name__', '__numpy_version__', '__package__', '__path__', '__spec__', '__version__', '_distributor_init', '_lib', 'absolute', 'absolute_import', 'add', 'add_docstring', 'add_newdoc', 'add_newdoc_ufunc', 'add_newdocs', 'alen', 'all', 'allclose', 'alltrue', 'amax', 'amin', 'angle', 'any', 'append', 'apply_along_axis', 'apply_over_axes', 'arange', 'arccos', 'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctan2', 'arctanh', 'argmax', 'argmin', 'argpartition', 'argsort', 'argwhere', 'around', 'array', 'array2string', 'array_equal', 'array_equiv', 'array_repr', 'array_split', 'array_str', 'asanyarray', 'asarray', 'asarray_chkfinite', 'ascontiguousarray', 'asfarray', 'asfortranarray', 'asmatrix', 'asscalar', 'atleast_1d', 'atleast_2d', 'atleast_3d', 'average', 'bartlett', 'base_repr', 'binary_repr', 'bincount', 'bitwise_and', 'bitwise_not', 'bitwise_or', 'bitwise_xor', 'blackman', 'block', 'bmat', 'bool8', 'bool_', 'broadcast', 'broadcast_arrays', 'broadcast_to', 'busday_count', 'busday_offset', 'busdaycalendar', 'byte', 'byte_bounds', 'bytes0', 'bytes_', 'c_', 'can_cast', 'cast', 'cbrt', 'cdouble', 'ceil', 'cfloat', 'char', 'character', 'chararray', 'choose', 'clip', 'clongdouble', 'clongfloat', 'column_stack', 'common_type', 'compare_chararrays', 'complex128', 'complex64', 'complex_', 'complexfloating', 'compress', 'concatenate', 'conj', 'conjugate', 'convolve', 'copy', 'copysign', 'copyto', 'corrcoef', 'correlate', 'cos', 'cosh', 'count_nonzero', 'cov', 'cross', 'csingle', 'ctypeslib', 'cumprod', 'cumproduct', 'cumsum', 'datetime64', 'datetime_as_string', 'datetime_data', 'deg2rad', 'degrees', 'delete', 'deprecate', 'deprecate_with_doc', 'diag', 'diag_indices', 'diag_indices_from', 'diagflat', 'diagonal', 'diff', 'digitize', 'disp', 'divide', 'division', 'divmod', 'dot', 'double', 'dsplit', 'dstack', 'dtype', 'e', 'ediff1d', 'einsum', 'einsum_path', 'emath', 'empty', 'empty_like', 'equal', 'erf', 'errstate', 'euler_gamma', 'exp', 'exp2', 'expand_dims', 'expm1', 'extract', 'eye', 'fabs', 'fastCopyAndTranspose', 'fft', 'fill_diagonal', 'find_common_type', 'finfo', 'fix', 'flatiter', 'flatnonzero', 'flexible', 'flip', 'fliplr', 'flipud', 'float16', 'float32', 'float64', 'float_', 'float_power', 'floating', 'floor', 'floor_divide', 'fmax', 'fmin', 'fmod', 'format_float_positional', 'format_float_scientific', 'format_parser', 'frexp', 'frombuffer', 'fromfile', 'fromfunction', 'fromiter', 'frompyfunc', 'fromregex', 'fromstring', 'full', 'full_like', 'fv', 'generic', 'genfromtxt', 'geomspace', 'get_array_wrap', 'get_include', 'get_printoptions', 'getbufsize', 'geterr', 'geterrcall', 'geterrobj', 'gradient', 'greater', 'greater_equal', 'half', 'hamming', 'hanning', 'heaviside', 'histogram', 'histogram2d', 'histogramdd', 'hsplit', 'hstack', 'hypot', 'i0', 'identity', 'ifft', 'iinfo', 'imag', 'in1d', 'index_exp', 'indices', 'inexact', 'inf', 'info', 'infty', 'inner', 'insert', 'int0', 'int16', 'int32', 'int64', 'int8', 'int_', 'int_asbuffer', 'intc', 'integer', 'interp', 'intersect1d', 'intp', 'invert', 'ipmt', 'irr', 'is_busday', 'isclose', 'iscomplex', 'iscomplexobj', 'isfinite', 'isfortran', 'isin', 'isinf', 'isnan', 'isnat', 'isneginf', 'isposinf', 'isreal', 'isrealobj', 'isscalar', 'issctype', 'issubclass_', 'issubdtype', 'issubsctype', 'iterable', 'ix_', 'kaiser', 'kron', 'ldexp', 'left_shift', 'less', 'less_equal', 'lexsort', 'linspace', 'little_endian', 'load', 'loads', 'loadtxt', 'log', 'log10', 'log1p', 'log2', 'logaddexp', 'logaddexp2', 'logical_and', 'logical_not', 'logical_or', 'logical_xor', 'logn', 'logspace', 'long', 'longcomplex', 'longdouble', 'longfloat', 'longlong', 'lookfor', 'ma', 'mafromtxt', 'mask_indices', 'mat', 'math', 'matmul', 'matrix', 'maximum', 'maximum_sctype', 'may_share_memory', 'mean', 'median', 'memmap', 'meshgrid', 'mgrid', 'min_scalar_type', 'minimum', 'mintypecode', 'mirr', 'mod', 'modf', 'moveaxis', 'msort', 'multiply', 'nan', 'nan_to_num', 'nanargmax', 'nanargmin', 'nancumprod', 'nancumsum', 'nanmax', 'nanmean', 'nanmedian', 'nanmin', 'nanpercentile', 'nanprod', 'nanstd', 'nansum', 'nanvar', 'nbytes', 'ndarray', 'ndenumerate', 'ndfromtxt', 'ndim', 'ndindex', 'nditer', 'negative', 'nested_iters', 'newaxis', 'nextafter', 'nonzero', 'not_equal', 'nper', 'npv', 'number', 'obj2sctype', 'object0', 'object_', 'ogrid', 'ones', 'ones_like', 'outer', 'packbits', 'pad', 'partition', 'percentile', 'pi', 'piecewise', 'pkgload', 'place', 'pmt', 'poly', 'poly1d', 'polyadd', 'polyder', 'polydiv', 'polyfit', 'polyint', 'polymul', 'polysub', 'polyval', 'positive', 'power', 'ppmt', 'print_function', 'prod', 'product', 'promote_types', 'ptp', 'put', 'putmask', 'pv', 'r_', 'rad2deg', 'radians', 'rand', 'randn', 'random', 'rank', 'rate', 'ravel', 'ravel_multi_index', 'real', 'real_if_close', 'rec', 'recarray', 'recfromcsv', 'recfromtxt', 'reciprocal', 'record', 'remainder', 'repeat', 'require', 'reshape', 'resize', 'result_type', 'right_shift', 'rint', 'roll', 'rollaxis', 'roots', 'rot90', 'round_', 'row_stack', 's_', 'safe_eval', 'save', 'savetxt', 'savez', 'savez_compressed', 'sctype2char', 'sctypeDict', 'sctypeNA', 'sctypes', 'searchsorted', 'select', 'set_numeric_ops', 'set_printoptions', 'set_string_function', 'setbufsize', 'setdiff1d', 'seterr', 'seterrcall', 'seterrobj', 'setxor1d', 'shape', 'shares_memory', 'short', 'show_config', 'show_numpy_config', 'sign', 'signbit', 'signedinteger', 'sin', 'sinc', 'single', 'singlecomplex', 'sinh', 'size', 'sometrue', 'sort', 'sort_complex', 'source', 'spacing', 'split', 'sqrt', 'square', 'squeeze', 'stack', 'std', 'str0', 'str_', 'string_', 'subtract', 'sum', 'swapaxes', 'take', 'tan', 'tanh', 'tensordot', 'test', 'tile', 'timedelta64', 'trace', 'tracemalloc_domain', 'transpose', 'trapz', 'tri', 'tril', 'tril_indices', 'tril_indices_from', 'trim_zeros', 'triu', 'triu_indices', 'triu_indices_from', 'true_divide', 'trunc', 'typeDict', 'typeNA', 'typecodes', 'typename', 'ubyte', 'ufunc', 'uint', 'uint0', 'uint16', 'uint32', 'uint64', 'uint8', 'uintc', 'uintp', 'ulonglong', 'unicode', 'unicode_', 'union1d', 'unique', 'unpackbits', 'unravel_index', 'unsignedinteger', 'unwrap', 'ushort', 'vander', 'var', 'vdot', 'vectorize', 'version', 'void', 'void0', 'vsplit', 'vstack', 'where', 'who', 'zeros', 'zeros_like']
Tutorial from: https://github.com/amueller/scipy-2017-sklearn/blob/master/notebooks/02.Scientific_Computing_Tools_in_Python.ipynb
Another important part of machine learning is the visualization of data. The most common
tool for this in Python is matplotlib
. It is an extremely flexible package, and
we will go over some basics here.
Jupyter has built-in "magic functions", the "matoplotlib inline" mode, which will draw the plots directly inside the notebook. Should be on by default.
%matplotlib inline
import matplotlib.pyplot as plt
# Plotting a line
x = np.linspace(0, 10, 100)
plt.plot(x, np.sin(x));
# Scatter-plot points
x = np.random.normal(size=500)
y = np.random.normal(size=500)
plt.scatter(x, y);
# Showing images using imshow
# - note that origin is at the top-left by default!
#x = np.linspace(1, 12, 100)
#y = x[:, np.newaxis]
#im = y * np.sin(x) * np.cos(y)
im = np.array([[1, 2, 3],[4,5,6],[6,7,8]])
import matplotlib.pyplot as plt
plt.imshow(im);
plt.colorbar();
plt.xlabel('x')
plt.ylabel('y')
plt.show();
# Contour plots
# - note that origin here is at the bottom-left by default!
plt.contour(im);
# 3D plotting
from mpl_toolkits.mplot3d import Axes3D
ax = plt.axes(projection='3d')
xgrid, ygrid = np.meshgrid(x, y.ravel())
ax.plot_surface(xgrid, ygrid, im, cmap=plt.cm.viridis, cstride=2, rstride=2, linewidth=0);
There are many more plot types available. See matplotlib gallery.
Test these examples: copy the Source Code
link, and put it in a notebook using the %load
magic.
For example:
# %load http://matplotlib.org/mpl_examples/pylab_examples/ellipse_collection.py
"Scikit-learn: Machine Learning in Python", Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, Édouard Duchesnay; 12(Oct):2825−2830, 2011
Considered leading Machine Learning toolbox. Was getting discarded as field switched from sinlge CPU to multicore, but appears to be making comeback with parallel upgrades
import sklearn as sk
dir(sk)
['_ASSUME_FINITE', '__SKLEARN_SETUP__', '__all__', '__builtins__', '__cached__', '__check_build', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '__version__', '_contextmanager', '_isotonic', 'base', 'calibration', 'clone', 'cluster', 'config_context', 'covariance', 'cross_decomposition', 'cross_validation', 'datasets', 'decomposition', 'discriminant_analysis', 'dummy', 'ensemble', 'exceptions', 'externals', 'feature_extraction', 'feature_selection', 'gaussian_process', 'get_config', 'grid_search', 'isotonic', 'kernel_approximation', 'kernel_ridge', 'learning_curve', 'linear_model', 'logger', 'logging', 'manifold', 'metrics', 'mixture', 'model_selection', 'multiclass', 'multioutput', 'naive_bayes', 'neighbors', 'neural_network', 'os', 'pipeline', 'preprocessing', 'random_projection', 're', 'semi_supervised', 'set_config', 'setup_module', 'svm', 'sys', 'tree', 'utils', 'warnings']
Given training data $(\mathbf x_{(i)},y_i)$ for $i=1,...,m$ --> lists of samples $\verb|X|$ and labels $\verb|y|$
Choose a model $f(\cdot)$ where we want to make $f(\mathbf x_{(i)})\approx y_i$ (for all $i$) --> choose sklearn estimator to use
Define a loss function $L(f(\mathbf x), y)$ to minimize by changing $f(\cdot)$ ...by adjusting the weights --> default choises for estimators, sometimes multiple options
sklearn
has an Object Oriented interface
Most models/transforms/objects in sklearn
are Estimator
objects
class Estimator(object):
def fit(self, X, y=None):
"""Fit model to data X (and y)"""
self.some_attribute = self.some_fitting_method(X, y)
return self
def predict(self, X_test):
"""Make prediction based on passed features"""
pred = self.make_prediction(X_test)
return pred
model = Estimator()
The Estimator
class defines a fit()
method as well as a predict()
method. For an instance of an Estimator
stored in a variable model
:
model.fit
: fits the model with the passed in training data. For supervised models, it also accepts a second argument y
that corresponds to the labels (model.fit(X, y)
. For unsupervised models, there are no labels so you only need to pass in the feature matrix (model.fit(X)
)Since the interface is very OO, the instance itself stores the results of the
fit
internally. And as such you must alwaysfit()
before youpredict()
on the same object.
model.predict
: predicts new labels for any new datapoints passed in (model.predict(X_test)
) and returns an array equal in length to the number of rows of what is passed in containing the predicted labels.Supervised estimators in addition to the above methods typically also have:
model.predict_proba: For classifiers that have a notion of probability (or some measure of confidence in a prediction) this method returns those "probabilities". The label with the highest probability is what is returned by the
model.predict()` mehod from above.model.score
: For both classification and regression models, this method returns some measure of validation of the model (which is configurable). For example, in regression the default is typically R^2 and classification it is accuracy.Some estimators in the library implement this.
Unsupervised in this case refers to any method that does not need labels, including unsupervised classifiers, preprocessing (like tf-idf), dimensionality reduction, etc.
The transformer interface usually defines two additional methods:
model.transform
: Given an unsupervised model, transform the input into a new basis (or feature space). This accepts on argument (usually a feature matrix) and returns a matrix of the input transformed. Note: You need to fit()
the model before you transform it.model.fit_transform
: For some models you may not need to fit()
and transform()
separately. In these cases it is more convenient to do both at the same time. X = [[0], [1], [2], [3]]
y = [0, 0, 1, 1]
from sklearn.neighbors import KNeighborsClassifier
neigh = KNeighborsClassifier(n_neighbors=3)
neigh.fit(X, y)
print(neigh.predict([[1.1]]))
print(neigh.predict_proba([[0.9]]))
[0] [[0.66666667 0.33333333]]
If you know your matric has particular structure, you can take advantage of this to greatly reduce computations and/or storage
Examples:
How would you efficiently store these?
How might you efficiently multiple by a vector?
SciPy 2-D sparse matrix package for numeric data.
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html
Sparse matrix types:
Different formats will be faster or slower for different tasks. Read API.
Stores list of values, list of column indices, and value-list indices for values that start each row
Also known as Compressed Row Storage CRS
from scipy.sparse import csr_matrix
indptr = np.array([0, 2, 3, 6])
indices = np.array([0, 2, 2, 0, 1, 2])
data = np.array([1, 2, 3, 4, 5, 6])
csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2], [0, 0, 3], [4, 5, 6]])
# can also define with simple indices
row = np.array([0, 0, 1, 2, 2, 2])
col = np.array([0, 2, 2, 0, 1, 2])
data = np.array([1, 2, 3, 4, 5, 6])
csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2], [0, 0, 3], [4, 5, 6]], dtype=int32)
Create two random matrices then make them sparse by zeroing out most elements (e.g. $\verb|A[A<0.99]=0|$)
Compare speed of matrix multiplication for different sparse formats
x = np.array([2,0,1,8])
x
array([2, 0, 1, 8])
NumPy arrays are zero-based like Python lists, but linear algebra writings are typically one-based.
print(x[0],x[3])
2 8
Behind the scenes it's just another list of numbers with some extra info regarding dimensions
https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.ndarray.html
A $d$-dimensional data structure, containing $n_1\times n_2 \times ... \times n_d$ numbers
np.random.rand(3)
array([0.57100166, 0.07586713, 0.90062779])
np.random.rand(3,2) # note not a tuple (unlike many other numpy functions)
array([[0.49662458, 0.23158612], [0.94269648, 0.84962285], [0.68847847, 0.73942405]])
np.random.rand(3,2,4)
array([[[0.09840227, 0.26310991, 0.58589047, 0.33265107], [0.89329091, 0.99117784, 0.49475921, 0.08047502]], [[0.09570909, 0.28074458, 0.15119848, 0.99682941], [0.46506878, 0.0333583 , 0.08488412, 0.26735574]], [[0.65350538, 0.43238726, 0.79292367, 0.58734204], [0.3019322 , 0.21985196, 0.41835067, 0.44614492]]])
T = np.random.rand(3,2,4,3,2)
T.shape
(3, 2, 4, 3, 2)
T.ndim
5
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
Converting loops into linear algebra functions where loop is performed at lower level
E.g. instead of looping over a list to compute squares of elements, make into array and "square" array
v = [1,2,3,4,5]
v2 = []
for v_k in v:
v2.append(v_k**2)
v2
[1, 4, 9, 16, 25]
np.array(v)**2
array([ 1, 4, 9, 16, 25], dtype=int32)
w = np.array([1, 2])
v = np.array([3, 4])
np.dot(w,v)
11
w = np.array([0, 1])
v = np.array([1, 0])
np.dot(w,v)
0
w = np.array([1, 2])
v = np.array([-2, 1])
np.dot(w,v)
0
NumPy implements a broadcast version of multiplication when using the "*" operator.
It guesses what you mean rather by seeking ways the shapes match, rather than giving error.
w = np.array([[2,-6],[-1, 4]])
v = np.array([12,46])
w*v
array([[ 24, -276], [ -12, 184]])
v+w
array([[14, 40], [11, 50]])
Multiply matrices or vectrors in an element-wise manner by repeating "singular" dimensions.
Matlab and Numpy automatically do this now.
Also (and previously) in matlab, e.g.: "brcm(@plus, A, x). numpy.broadcast
a special case of matrix-matrix multiplication
w = np.array([[ 2, -6],
[-1, 4]])
v = np.array([[+1],
[-1]])
np.matmul(w,v)
array([[ 8], [-5]])
w@v
array([ 8, -5])
A = np.array([[1,2],[3, 4]])
B = np.array([[1,0],[1, 1]])
A*B
array([[1, 0], [3, 4]])
np.matmul(A,B)
array([[3, 2], [7, 4]])
np.dot(A,B)
array([[3, 2], [7, 4]])
A@B
array([[3, 2], [7, 4]])
x = np.array([1,2,3,4])
x = x.reshape(4,1)
print(x.reshape(4,1))
[[1] [2] [3] [4]]
print(x.reshape(2,2))
[[1 2] [3 4]]
print(x)
x_T = x.transpose()
print (x_T)
print (x_T.shape)
print(x.T)
[[1] [2] [3] [4]] [[1 2 3 4]] (1, 4) [[1 2 3 4]]
np.eye(3)
array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]])
D = np.diag([1,2,3])
print(D)
[[1 0 0] [0 2 0] [0 0 3]]
np.diag(D)
array([1, 2, 3])
A = np.array([[1,2],[4,5]])
iA = np.linalg.inv(A)
print(iA)
print(np.matmul(A,iA))
[[-1.66666667 0.66666667] [ 1.33333333 -0.33333333]] [[1. 0.] [0. 1.]]
2.*8.
16.0
A = np.random.randint(0, 10, size=(3, 3))
A_inv = np.linalg.inv(A)
print(A)
print(A_inv)
print(np.matmul(A,A_inv))
[[2 6 4] [5 7 1] [5 3 2]] [[-1.25000000e-01 -1.11022302e-17 2.50000000e-01] [ 5.68181818e-02 1.81818182e-01 -2.04545455e-01] [ 2.27272727e-01 -2.72727273e-01 1.81818182e-01]] [[ 1.00000000e+00 0.00000000e+00 -1.11022302e-16] [-2.77555756e-17 1.00000000e+00 -8.32667268e-17] [-5.55111512e-17 0.00000000e+00 1.00000000e+00]]
Note that "hard zeros" rarely exist in real world due to limited numerical precision.
A = np.asarray([[.3,.1,.6],[.1,.3,.6],[.15,.15,.70]])
np.linalg.eig(A)
(array([1. , 0.2, 0.1]), array([[-5.77350269e-01, -7.07106781e-01, -6.66666667e-01], [-5.77350269e-01, 7.07106781e-01, -6.66666667e-01], [-5.77350269e-01, -2.74027523e-16, 3.33333333e-01]]))
Note there's only one return
(u,s) = np.linalg.eig(A)
print(u)
print(s)
[1. 0.2 0.1] [[-5.77350269e-01 -7.07106781e-01 -6.66666667e-01] [-5.77350269e-01 7.07106781e-01 -6.66666667e-01] [-5.77350269e-01 -2.74027523e-16 3.33333333e-01]]
help(np.linalg.eig)
Help on function eig in module numpy.linalg.linalg: eig(a) Compute the eigenvalues and right eigenvectors of a square array. Parameters ---------- a : (..., M, M) array Matrices for which the eigenvalues and right eigenvectors will be computed Returns ------- w : (..., M) array The eigenvalues, each repeated according to its multiplicity. The eigenvalues are not necessarily ordered. The resulting array will be of complex type, unless the imaginary part is zero in which case it will be cast to a real type. When `a` is real the resulting eigenvalues will be real (0 imaginary part) or occur in conjugate pairs v : (..., M, M) array The normalized (unit "length") eigenvectors, such that the column ``v[:,i]`` is the eigenvector corresponding to the eigenvalue ``w[i]``. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigvals : eigenvalues of a non-symmetric array. eigh : eigenvalues and eigenvectors of a symmetric or Hermitian (conjugate symmetric) array. eigvalsh : eigenvalues of a symmetric or Hermitian (conjugate symmetric) array. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of general square arrays. The number `w` is an eigenvalue of `a` if there exists a vector `v` such that ``dot(a,v) = w * v``. Thus, the arrays `a`, `w`, and `v` satisfy the equations ``dot(a[:,:], v[:,i]) = w[i] * v[:,i]`` for :math:`i \in \{0,...,M-1\}`. The array `v` of eigenvectors may not be of maximum rank, that is, some of the columns may be linearly dependent, although round-off error may obscure that fact. If the eigenvalues are all different, then theoretically the eigenvectors are linearly independent. Likewise, the (complex-valued) matrix of eigenvectors `v` is unitary if the matrix `a` is normal, i.e., if ``dot(a, a.H) = dot(a.H, a)``, where `a.H` denotes the conjugate transpose of `a`. Finally, it is emphasized that `v` consists of the *right* (as in right-hand side) eigenvectors of `a`. A vector `y` satisfying ``dot(y.T, a) = z * y.T`` for some number `z` is called a *left* eigenvector of `a`, and, in general, the left and right eigenvectors of a matrix are not necessarily the (perhaps conjugate) transposes of each other. References ---------- G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, Various pp. Examples -------- >>> from numpy import linalg as LA (Almost) trivial example with real e-values and e-vectors. >>> w, v = LA.eig(np.diag((1, 2, 3))) >>> w; v array([ 1., 2., 3.]) array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) Real matrix possessing complex e-values and e-vectors; note that the e-values are complex conjugates of each other. >>> w, v = LA.eig(np.array([[1, -1], [1, 1]])) >>> w; v array([ 1. + 1.j, 1. - 1.j]) array([[ 0.70710678+0.j , 0.70710678+0.j ], [ 0.00000000-0.70710678j, 0.00000000+0.70710678j]]) Complex-valued matrix with real e-values (but complex-valued e-vectors); note that a.conj().T = a, i.e., a is Hermitian. >>> a = np.array([[1, 1j], [-1j, 1]]) >>> w, v = LA.eig(a) >>> w; v array([ 2.00000000e+00+0.j, 5.98651912e-36+0.j]) # i.e., {2, 0} array([[ 0.00000000+0.70710678j, 0.70710678+0.j ], [ 0.70710678+0.j , 0.00000000+0.70710678j]]) Be careful about round-off error! >>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]]) >>> # Theor. e-values are 1 +/- 1e-9 >>> w, v = LA.eig(a) >>> w; v array([ 1., 1.]) array([[ 1., 0.], [ 0., 1.]])
np.linalg.svd(A)
(array([[-0.32453643, -0.9458732 ], [-0.9458732 , 0.32453643]]), array([6.76782894, 0.44327362]), array([[-0.60699365, -0.79470668], [ 0.79470668, -0.60699365]]))
Note outputs are U, S, and V-transposed
help(np.linalg.svd)
Help on function svd in module numpy.linalg.linalg: svd(a, full_matrices=True, compute_uv=True) Singular Value Decomposition. When `a` is a 2D array, it is factorized as ``u @ np.diag(s) @ vh = (u * s) @ vh``, where `u` and `vh` are 2D unitary arrays and `s` is a 1D array of `a`'s singular values. When `a` is higher-dimensional, SVD is applied in stacked mode as explained below. Parameters ---------- a : (..., M, N) array_like A real or complex array with ``a.ndim >= 2``. full_matrices : bool, optional If True (default), `u` and `vh` have the shapes ``(..., M, M)`` and ``(..., N, N)``, respectively. Otherwise, the shapes are ``(..., M, K)`` and ``(..., K, N)``, respectively, where ``K = min(M, N)``. compute_uv : bool, optional Whether or not to compute `u` and `vh` in addition to `s`. True by default. Returns ------- u : { (..., M, M), (..., M, K) } array Unitary array(s). The first ``a.ndim - 2`` dimensions have the same size as those of the input `a`. The size of the last two dimensions depends on the value of `full_matrices`. Only returned when `compute_uv` is True. s : (..., K) array Vector(s) with the singular values, within each vector sorted in descending order. The first ``a.ndim - 2`` dimensions have the same size as those of the input `a`. vh : { (..., N, N), (..., K, N) } array Unitary array(s). The first ``a.ndim - 2`` dimensions have the same size as those of the input `a`. The size of the last two dimensions depends on the value of `full_matrices`. Only returned when `compute_uv` is True. Raises ------ LinAlgError If SVD computation does not converge. Notes ----- .. versionchanged:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The decomposition is performed using LAPACK routine ``_gesdd``. SVD is usually described for the factorization of a 2D matrix :math:`A`. The higher-dimensional case will be discussed below. In the 2D case, SVD is written as :math:`A = U S V^H`, where :math:`A = a`, :math:`U= u`, :math:`S= \mathtt{np.diag}(s)` and :math:`V^H = vh`. The 1D array `s` contains the singular values of `a` and `u` and `vh` are unitary. The rows of `vh` are the eigenvectors of :math:`A^H A` and the columns of `u` are the eigenvectors of :math:`A A^H`. In both cases the corresponding (possibly non-zero) eigenvalues are given by ``s**2``. If `a` has more than two dimensions, then broadcasting rules apply, as explained in :ref:`routines.linalg-broadcasting`. This means that SVD is working in "stacked" mode: it iterates over all indices of the first ``a.ndim - 2`` dimensions and for each combination SVD is applied to the last two indices. The matrix `a` can be reconstructed from the decomposition with either ``(u * s[..., None, :]) @ vh`` or ``u @ (s[..., None] * vh)``. (The ``@`` operator can be replaced by the function ``np.matmul`` for python versions below 3.5.) If `a` is a ``matrix`` object (as opposed to an ``ndarray``), then so are all the return values. Examples -------- >>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6) >>> b = np.random.randn(2, 7, 8, 3) + 1j*np.random.randn(2, 7, 8, 3) Reconstruction based on full SVD, 2D case: >>> u, s, vh = np.linalg.svd(a, full_matrices=True) >>> u.shape, s.shape, vh.shape ((9, 9), (6,), (6, 6)) >>> np.allclose(a, np.dot(u[:, :6] * s, vh)) True >>> smat = np.zeros((9, 6), dtype=complex) >>> smat[:6, :6] = np.diag(s) >>> np.allclose(a, np.dot(u, np.dot(smat, vh))) True Reconstruction based on reduced SVD, 2D case: >>> u, s, vh = np.linalg.svd(a, full_matrices=False) >>> u.shape, s.shape, vh.shape ((9, 6), (6,), (6, 6)) >>> np.allclose(a, np.dot(u * s, vh)) True >>> smat = np.diag(s) >>> np.allclose(a, np.dot(u, np.dot(smat, vh))) True Reconstruction based on full SVD, 4D case: >>> u, s, vh = np.linalg.svd(b, full_matrices=True) >>> u.shape, s.shape, vh.shape ((2, 7, 8, 8), (2, 7, 3), (2, 7, 3, 3)) >>> np.allclose(b, np.matmul(u[..., :3] * s[..., None, :], vh)) True >>> np.allclose(b, np.matmul(u[..., :3], s[..., None] * vh)) True Reconstruction based on reduced SVD, 4D case: >>> u, s, vh = np.linalg.svd(b, full_matrices=False) >>> u.shape, s.shape, vh.shape ((2, 7, 8, 3), (2, 7, 3), (2, 7, 3, 3)) >>> np.allclose(b, np.matmul(u * s[..., None, :], vh)) True >>> np.allclose(b, np.matmul(u, s[..., None] * vh)) True
Q,R = np.linalg.qr(A)
print(Q)
#print(R)
[[-0.85714286 0.39439831 -0.33129458] [-0.28571429 -0.89922814 -0.33129458] [-0.42857143 -0.18931119 0.88345221]]
np.dot(Q[:,2],Q[:,2])
1.0
Q.T@Q
array([[ 1.00000000e+00, 3.25682983e-17, -6.47535828e-17], [ 3.25682983e-17, 1.00000000e+00, 1.03449228e-16], [-6.47535828e-17, 1.03449228e-16, 1.00000000e+00]])
help(np.linalg.qr)
Help on function qr in module numpy.linalg.linalg: qr(a, mode='reduced') Compute the qr factorization of a matrix. Factor the matrix `a` as *qr*, where `q` is orthonormal and `r` is upper-triangular. Parameters ---------- a : array_like, shape (M, N) Matrix to be factored. mode : {'reduced', 'complete', 'r', 'raw', 'full', 'economic'}, optional If K = min(M, N), then * 'reduced' : returns q, r with dimensions (M, K), (K, N) (default) * 'complete' : returns q, r with dimensions (M, M), (M, N) * 'r' : returns r only with dimensions (K, N) * 'raw' : returns h, tau with dimensions (N, M), (K,) * 'full' : alias of 'reduced', deprecated * 'economic' : returns h from 'raw', deprecated. The options 'reduced', 'complete, and 'raw' are new in numpy 1.8, see the notes for more information. The default is 'reduced', and to maintain backward compatibility with earlier versions of numpy both it and the old default 'full' can be omitted. Note that array h returned in 'raw' mode is transposed for calling Fortran. The 'economic' mode is deprecated. The modes 'full' and 'economic' may be passed using only the first letter for backwards compatibility, but all others must be spelled out. See the Notes for more explanation. Returns ------- q : ndarray of float or complex, optional A matrix with orthonormal columns. When mode = 'complete' the result is an orthogonal/unitary matrix depending on whether or not a is real/complex. The determinant may be either +/- 1 in that case. r : ndarray of float or complex, optional The upper-triangular matrix. (h, tau) : ndarrays of np.double or np.cdouble, optional The array h contains the Householder reflectors that generate q along with r. The tau array contains scaling factors for the reflectors. In the deprecated 'economic' mode only h is returned. Raises ------ LinAlgError If factoring fails. Notes ----- This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, and zungqr. For more information on the qr factorization, see for example: http://en.wikipedia.org/wiki/QR_factorization Subclasses of `ndarray` are preserved except for the 'raw' mode. So if `a` is of type `matrix`, all the return values will be matrices too. New 'reduced', 'complete', and 'raw' options for mode were added in NumPy 1.8.0 and the old option 'full' was made an alias of 'reduced'. In addition the options 'full' and 'economic' were deprecated. Because 'full' was the previous default and 'reduced' is the new default, backward compatibility can be maintained by letting `mode` default. The 'raw' option was added so that LAPACK routines that can multiply arrays by q using the Householder reflectors can be used. Note that in this case the returned arrays are of type np.double or np.cdouble and the h array is transposed to be FORTRAN compatible. No routines using the 'raw' return are currently exposed by numpy, but some are available in lapack_lite and just await the necessary work. Examples -------- >>> a = np.random.randn(9, 6) >>> q, r = np.linalg.qr(a) >>> np.allclose(a, np.dot(q, r)) # a does equal qr True >>> r2 = np.linalg.qr(a, mode='r') >>> r3 = np.linalg.qr(a, mode='economic') >>> np.allclose(r, r2) # mode='r' returns the same r as mode='full' True >>> # But only triu parts are guaranteed equal when mode='economic' >>> np.allclose(r, np.triu(r3[:6,:6], k=0)) True Example illustrating a common use of `qr`: solving of least squares problems What are the least-squares-best `m` and `y0` in ``y = y0 + mx`` for the following data: {(0,1), (1,0), (1,2), (2,1)}. (Graph the points and you'll see that it should be y0 = 0, m = 1.) The answer is provided by solving the over-determined matrix equation ``Ax = b``, where:: A = array([[0, 1], [1, 1], [1, 1], [2, 1]]) x = array([[y0], [m]]) b = array([[1], [0], [2], [1]]) If A = qr such that q is orthonormal (which is always possible via Gram-Schmidt), then ``x = inv(r) * (q.T) * b``. (In numpy practice, however, we simply use `lstsq`.) >>> A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]]) >>> A array([[0, 1], [1, 1], [1, 1], [2, 1]]) >>> b = np.array([1, 0, 2, 1]) >>> q, r = LA.qr(A) >>> p = np.dot(q.T, b) >>> np.dot(LA.inv(r), p) array([ 1.1e-16, 1.0e+00])
Load Boston house prices dataset.
Formulate linear system and try using inverse and pseudoinverse to solve.
from sklearn.datasets import load_boston
boston = load_boston()
print(dir(boston))
print(boston.data.shape)
print(boston.feature_names)
print(boston.DESCR)
['DESCR', 'data', 'feature_names', 'filename', 'target'] (506, 13) ['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO' 'B' 'LSTAT'] .. _boston_dataset: Boston house prices dataset --------------------------- **Data Set Characteristics:** :Number of Instances: 506 :Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the target. :Attribute Information (in order): - CRIM per capita crime rate by town - ZN proportion of residential land zoned for lots over 25,000 sq.ft. - INDUS proportion of non-retail business acres per town - CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise) - NOX nitric oxides concentration (parts per 10 million) - RM average number of rooms per dwelling - AGE proportion of owner-occupied units built prior to 1940 - DIS weighted distances to five Boston employment centres - RAD index of accessibility to radial highways - TAX full-value property-tax rate per $10,000 - PTRATIO pupil-teacher ratio by town - B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town - LSTAT % lower status of the population - MEDV Median value of owner-occupied homes in $1000's :Missing Attribute Values: None :Creator: Harrison, D. and Rubinfeld, D.L. This is a copy of UCI ML housing dataset. https://archive.ics.uci.edu/ml/machine-learning-databases/housing/ This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University. The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics ...', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter. The Boston house-price data has been used in many machine learning papers that address regression problems. .. topic:: References - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261. - Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.
(easy way) - Linear regression after nonlinear transformation
Old: \begin{align} \mathbf y = \beta_0 + \beta_1 \mathbf x_{(1)} + \beta_2 \mathbf x_{(2)} +...+ \beta_n \mathbf x_{(n)} + \varepsilon , \; \; \; \mathbf x_{(i)} = \begin{bmatrix} x_{(i),1} \\x_{(i),2} \\ \vdots \\ x_{(i),m} \end{bmatrix} \end{align}
New: \begin{align} \mathbf y = \beta_0 + \beta_1 \mathbf x'_{(1)} + \beta_2 \mathbf x'_{(2)} +...+ \beta_n \mathbf x'_{(n)} + \varepsilon, \;\;\; \mathbf x'_{(i)} = \begin{bmatrix} f_{(i)}(x_1) \\f_{(i)}(x_2) \\ \vdots \\ f_{(i)}(x_m) \end{bmatrix} \end{align}
...Feature Engineering
New model: $\mathbf y = \beta_0 + \beta_1 \mathbf x'_{(1)} + \beta_2 \mathbf x'_{(2)} +...+ \beta_n \mathbf x'_{(n)} + \varepsilon$
$$\mathbf x'_{(i)} = \begin{bmatrix} f_{(i)}(x_1) \\f_{(i)}(x_2) \\ \vdots \\ f_{(i)}(x_m) \end{bmatrix} = \begin{bmatrix} x_{1}^i \\x_{2}^i \\ \vdots \\ x_{m}^i \end{bmatrix}$$Exercise: write the model equations out for 3D case, i.e. $\bf x$ is just $x_1$, $x_2$, and $x_3$.
show_polyfit_ho_example_results(dosage,conc_noisy,(1,2,3,4,5,6));
order: 1, residual: 56.6204627002199 order: 2, residual: 43.28483436298878 order: 3, residual: 38.90189854595423 order: 4, residual: 21.166171682768383 order: 5, residual: 13.416800916508517 order: 6, residual: 1.8203750586044797e-11